skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ramakrishnan, Lavanya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The growth in scientific data volumes has resulted in a need to scale up processing and analysis pipelines using High Performance Computing (HPC) systems. These workflows need interactive, reproducible analytics at scale. The Jupyter platform provides core capabilities for interactivity but was not designed for HPC systems. In this paper, we outline our efforts that bring together core technologies based on the Jupyter Platform to create interactive, reproducible analytics at scale on HPC systems. Our work is grounded in a real world science use case - applying geophysical simulations and inversions for imaging the subsurface. Our core platform addresses three key areas of the scientific analysis workflow - reproducibility, scalability, and interactivity. We describe our implemention of a system, using Binder, Science Capsule, and Dask software. We demonstrate the use of this software to run our use case and interactively visualize real-time streams of HDF5 data. 
    more » « less